An Intelligent Fuzzing Data Generation Method Based on Deep Adversarial Learning
نویسندگان
چکیده
منابع مشابه
H-Fuzzing: A New Heuristic Method for Fuzzing Data Generation
How to efficiently reduce the fuzzing data scale while assuring high fuzzing veracity and vulnerability coverage is a pivotal issue in program fuzz test. This paper proposes a new heuristic method for fuzzing data generation named with H-Fuzzing. H-Fuzzing achieves a high program execution path coverage by retrieving the static information and dynamic property from the program. Our experiments ...
متن کاملDeep Reinforcement Fuzzing
Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-theart deep Q-learning algorithms that optimize rewards, which we define from runtime properties of...
متن کاملAdversarial Examples Generation and Defense Based on Generative Adversarial Network
We propose a novel generative adversarial network to generate and defend adversarial examples for deep neural networks (DNN). The adversarial stability of a network D is improved by training alternatively with an additional network G. Our experiment is carried out on MNIST, and the adversarial examples are generated in an efficient way compared with wildly-used gradient based methods. After tra...
متن کاملAdversarial Active Learning for Deep Networks: a Margin Based Approach
We propose a new active learning strategy designed for deep neural networks. The goal is to minimize the number of data annotation queried from an oracle during training. Previous active learning strategies scalable for deep networks were mostly based on uncertain sample selection. In this work, we focus on examples lying close to the decision boundary. Based on theoretical works on margin theo...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2911121